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Phase Separations in Ising Model with 
Free Boundary Condition 
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We consider the problem of phase separations in Ising model with free bound- 
ary condition. We prove that-a typical configuration has just one open contour ?~ 
which separates V into two parts which are occupied by the opposite phases. )t is 
the shortest possible contour compatible with the condition that V is divided by 
X into two regions of area O] V[ and (1 - P)[ V[. 

KEY WORDS: Ising model; Gibbs measure; phase separation; phase 
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1. I N T R O D U C T I O N  

In  this pape r  we consider the p rob lem of phase  separat ions in two- 
dimensional  Ising mode l  with free b o u n d a r y  condition. The  result with this 
bounda ry  condi t ion is different f rom the one with pure  b o u n d a r y  condi t ion 
ob ta ined  by  Minlos and  Sinai. (1'2) 

They  showed the following theorem: under  the condi t ion that  the 
n u m b e r  of minus  spins in the square V is fixed to be p[V[ and ( + ) -  
b o u n d a r y  condition, the following s ta tements  are satisfied asymptot ica l ly  
with probabi l i ty  1 as IV[ ~ oo: 

(i) IlOm-axI- P [ V I I <  C l ( f l ) i V I  3/4 

0om~x (ii) 11 - 1-401/21v1 /21< c2(B)rvl 
[ C, ( f l )$O as fl---) ~ ] 

[ C2( fl )$0 as fl -~ oo ] 

where 0 m"x is the connected  c o m p o n e n t  of ( - ) - s p i n s  with max imal  area. 
This theorem means  that  the typical configurat ion has just  one "near ly  
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square" block of minus spins with the size of pl/21VI I/2 in the "sea" of plus 
spins asymptotically with probability 1 as V'~Z 2. 

On the other hand, this fact does not hold under free boundary 
condition and the following conjecture was given by Gallavotti (3~ : a typical 
configuration in V has just one phase separating line X which divides V into 
two regions V+ and V_ occupied by (+)-phase and (-)-phase,  respec- 
tively, and should be the shortest one under the condition that the area of 
V_ is nearly Pl VI- (See Fig. 1.) 

We prove this conjecture positively with respect to the conditional 
Gibbs measure. In the paper of Minlos and Sinai, the number of minus 
spins in V is fixed, but we use the more weak condition on the number of 
minus spins. We describe the conjecture of Gallavotti more precisely and 
give the definition of conditional Gibbs measure in Section 2. We give the 
rigorous statement of our result in Section 3 and give the proof in Section 6. 
In Section 4 we prove the key lemma for the proof. 

2. ISING MODEL WITH FREE BOUNDARY CONDITION 

First we give the definition of Gibbs measure of two-dimensional Ising 
model with free boundary condition. 

Let V be the square in Z 2. Put gv  = { + 1 , - 1 }  v and ~ v  = o{~0(t); 
t ~ V}. For a given configuration, ~ E ~v, we draw a unit line segment 
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perpendicular to each bond at the center if it joins different kinds of spins. 
Then these segments form lines (rectilinear curves). We attach to each line 
F the orientation along which we see plus spins on the left side, and put 

-- (17, +)  or (F, - )  according as the orientation of I" is anticlockwise or 
clockwise. Thus we have the family of open contours and closed contours 
{F = (F, + ) )  for each ~. It is clear that there is a one-to-one correspon- 
dence between the configuration and the family of contours (F1 . . . . .  l~s, 
~1 . . . .  , ~/,), where F1 . . . . .  Fs are closed contours and ~l . . . . .  ~k are 
open contours. 

The Gibbs measure of Ising model with free boundary condition is 
defined by the following probability measure on (gv, ~ v): 

Pv(~) = Zv lexp  - f l  IrA + E lajl 
i = l  j = l  

. . . . .  r,, l . . . . .  

where fl -1 is proportional to the temperature. 

(A) (B) 

"~IVl  ~ 

i | 
1 

1_ 

i J~IVI ~ ( ~  

J 
c c )  

,- e ~  IVF 

| 

Fig. 2. 
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Next we describe the conjucture of Gallavotti more precisely. When 
the number of minus spins in square V is fixed to be Pl VI, we have three 
types of phase separations according to the value of p. When 0 < p < 1/4, 
the length IX[ of phase separating line X is "nearly" 201/21VI 1/2 with some 
fluctuations, and ( - ) -phase  O_ is "nearly square" with the size of 
01/21VI1/2 with some fluctuations. (See Fig. 2A.) When 1/4 < O < 3/4,  IXl 
is "nearly" [VI 1/2, X starts from one side of square V and ends in the 
opposite side, and (9_ is "nearly rectangle" whose sides are oIVI 1/2 and 
I gl 1/2. (See Fig. 2B.) When 3 /4  < p < 1, Ixl is "nearly" 2(1 - 0)~/21 V[ 1/2 
and (+)-phase (9 + is "nearly square" with the size of (1 - p) 1/21 V I 1/2. (See 
Fig. 2C.) We prove this conjecture positively with respect to the following 
conditional Gibbs measure Pv, o(" ). 

Let N - (4; V) be the number of minus spins in V under the configura- 
tion 4 E a r  and let g(fi) be the function of fl satisfying g(fl)~O and 
exp(4fl)g(fl)$O as fl--> ~ .  

Put 

N;- -- {4 ~ av;  I N -  (4; v ) -  01vi i<  g ( f l ) l v l }  

where 0 < O < 1. Then the conditional Gibbs measure is given by 

= I N ; )  

3. STATEMENT OF RESULTS 

Before describing our results we prepare some terminologies. Since 
each configuration 4 can be identified with a family of contours, we write 

E 4 if r is contained in 4 as a contour. We also call open contour 
"transversal" if F starts from one side of V and ends in the opposite side. 
So the length of transversal contour is greater than I VI 1/2. 

For each configuration 4 ~ f~v, we denote the totality of transversal 
2 1 open contours by 4open and denote others by 4ope.. Let c o > 0, F is called 

c0-1arge if [F I > c01n I V I, and others are called c0-small. We call c0-1arge 
open contours and co-large closed contours which are not surrounded by 
any c0-small closed contours "phase boundary" and denote the totality of 
them by A. Next we give the definition of (+)-phase and ( - ) -phase .  Let 

1 4 1 be the totality of c0-small contours F in 4ope.. Let Re0(4 ) be the set of Co,open 

those sites which are surrounded by some contour in 4C~o, Opcn. We denote the 
area of Rco(4 ) by ]Rr I. From the definition of Co-smallness we have 

[R~o(4)[ < 2%1VI1/Eln[ V[ 

Thus V is divided into three parts (+)-phase O+ ,  ( - ) -phase  O , and 
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Fig. 3. 

Rco((). (See Fig. 3.) We also denote the connected components in O+ with 
maximal area by O max. 

Now let us state our results. 

Theorem. Let us fix 0 E (0, 1/4) U (1 /4 ,3 /4 )  U (3/4, 1) and take the 
value of fl sufficiently large. Then the following properties are valid as to 
the area of on' a• and the number of (_+) spins in | 

(I) p max (I) lim v,p(J[O_ I - o I V I I > k ( B ) I V I )  0 
V , ~ Z  2 

(II) lim Pv, o(llU+_ (~; O + ) - 0"*( fi )[O +_ [I > h ( fl )1VI 3/4) = 0 
V ~ Z  2 

Here k( f l )  = (5ko/3fi) 2, k 0 -- 4 / e  0 + 1, P**(fl) = 1 - p*(fl), and h(fl),  
o*(/~)4,0 a s / ~  ~ .  

Furthermore the following properties are satisfied as to the length of 
phase boundary ]A I according to the value of 0: 

(III-i) If 0 < 0 < 1/4, then we have 

lim Pvo(IAI > ( 2 p l / 2  + ko/f l  ) I VI '/2) = 0 
V ? Z  2 " , 

(III-ii) If 1 /4  < p < 3/4,  then we have 

lim Pv, o(IA[ >(1  + ko/ f l )  I VI'/2 ) = 0 
V ? Z  2 

(III-iii) If 3 /4  < O < 1, then we have 

lim Pvo([A] > [ 2 ( 1 -  0) '/2 + ko/B][V[ 1/2) = 0  
V , ~ Z  2 " , 
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From this theorem we can see that the typical configuration in V 
belonging to N o. satisfies the following properties if 0 <O < 1/4: (i) 
IAI--201/21 gl'/2; (ii) 10 ma• 1-01 gl asymptotically with probability one as 
V'~Z 2. These properties mean that Ore_ ax lies in one of the corners of V and 
the shape of Ore_ ax is nearly square with the size of 01/2 t VI 1/2. 

In other cases similar pictures of phase separations are obtained. 

4. PROPERTIES OF GIBBS MEASURE IN ISING MODEL 
WITH PURE BOUNDARY CONDITION 

We state some properties of Gibbs measure in Ising model with pure 
boundary condition which will be used in the sequel, and their proofs are 
given in Refs. 1 and 2. 

Let f~v,_+ be the configuration space in V with (___)-boundary condi- 
tion. We denote the Gibbs measure on f~v,_+ with (+_)-boundary condition 
by Pv,+_. We also denote the expectation value and the variance with 
respect to ev,+_ by (-)v,_+ and Dr+(.) ,  respectively. 

Lemma 4.1 (Minlos and Sinai). For sufficiently large fl we have 

I(N_+ )v,+_ - o**( 13)1 VII < Fl( fl )l Vl '/2 (1) 

Dr, + ( N _ )  < F2( fl )[ V I (2) 

where p**(fl) = 1 - 9*(fl) and O*(f l ) , r l ( f l ) ,F2( f l )~exp(-4 f l ) .  

The value of p*(fl) is determined through the correlation function in 
infinite region. (See Refs. 1 and 2.) 

Let W be the subset of V and Pw,+_,co be the conditional measure on 
~w,+ under the condition that all outer contours are c0-small. Then the 
following estimate is given in Ref. 1 (pages 349 and 360): 

Lemma 4.2 (Minlos and Sinai). If [W I > k] V[, then for sufficiently 
large fi and V we have 

ew,+,co(lN  (4; W) - 0**(B)I Wll> tlwi 
< c exp[ - q(fl)t2kl/21VI 1/2] 

where q ( f l ) ~ e x p ( - 4 f l )  and c is the absolute constant. 

5. ESTIMATE OF Pv(Nf) FROM BELOW 

For a finite set C of Z 2, we put 

8 C =  ( t ~ V \C;  lt - s I = l f o r s o m e s E C }  

8inC= ( t ~ C ; [ t - s  I = l f o r s o m e s E  V \ C }  

In tC  = C\OinC and C =  C U 8C 
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Let us introduce the correlation function of contours, 

,~(r ,  . . . . .  r ,  , A  1 . . . . .  ~k) = P~(~; (?, . . . . .  L , a , , ' '  , L}  C ~) 

By using the Peierls' argument we have the following estimate: 

Lemma 5.1. Or(F1 . . . . .  I ' s , A l ,  �9 �9 �9 , ~ k )  < e x p [ - - f l ( ~ - ] S = l l r i l  + 

The key for the proof of our theorem is the following estimate of 
Pv(N~-) from below. 

Lemma 5.2. Let us fix 0 ~(0, 1/4) U (1/4,3/4) U (3/4, 1) and take 
the value of/3 sufficiently large. Then we have the following estimates of 
Pv(No) for sufficiently large V according to the value of 0: 

(I) 0 < 0 < 1 / 4 :  

Pv(N~-) > c exp( - [201/2fl + m(/3)]1VI 1/2} 
(II) 1 / 4 < 0 < 3 / 4 :  

Pv(N~-) > c e x p ( - [ / 3  + m(/3) ][VI 1/2} 

(III) 3 / 4 < 0 < 1 :  

Pv(No ) > c e x p ( - [ 2 ( 1  - 0)1/2/3 + m( /3 ) ]lVI ~/2} 

where m(/3)~exp(-4/3)  and c is the absolute constant. 

Proof of Lemraa 5.2. We only treat the case of (I), since the proofs 
in other cases are very similar. Let V l be the square with size of 01/21 V[ ~/2 
and F be the open contour at the corner shown in Fig. 4. Put F = (I', +)  
and 

1 2 = q , }  M(F) = (~ ~ ~2v; F E ~op~, F :outer, ~open 
For each ( ~ M(F), put 

AI(~ ) -- Int(Vl',R"(~)) and A2(~ ) = Int(V2',R'(~)) 

I 

| 
�89 

P 

Fig. 4. 
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where 

R'(~)= U r(~) 

and r(A) is the region surrounded by h. It is clear that Al(~ ) has ( - ) -  
boundary condition and A2(~ ) has (+) -boundary  condition. Put h(~) 
= (A1(~), A2(~)). When the following condition is satisfied, configuration 

~ M(F) is called ),iregular (1 /2  < , / <  1). 

IIAI(~)I - pl vii  < g(/3)l  vl  v 

IIA2(~)I- (1 - o ) lVl l<  g ( B ) I v F  

Put 

H v = {(W1, W2); h(~) = (W1, W:) for some ~,-regular ~ ~ M(F) )  

For each X E IIr ,  put  

Mr(h ) = {~ e M(F);  h(~) = h} 

We denote the totality of 7-regular configurations by M~(F). 
By a standard argument, we have 

Pv(Np -) > 2 Pv(Mr(X))Px(Np -) (5.1) 
X ~ I] v 

where Px(') = Pv(" ]Mr(h))- 
We estimate Pa(N~-) and Pv(Mr(F)) separately from below. For each 

h = (W 1, W2) E IIr ,  put  

A x = {~ e Mr(h);  IN+ ((; W2) - o**(B)lw211< F2(B)1/31W211/2 
and I N_ (~; Wl) - 0"*( B )l Will < F2( fl )1/31W2[ 1/2 ) 

where F2(fl) is the function given in Lemma 4.1. For sufficiently large fl 
and V, we have A x C Mr(h ) A Np-. 

By Lemma 4.1 and Chevyshev's inequality, we have 

Px(No--) > Px(Ax) 

= ew,,_(lN_ (~; wl)  - o**(•)lw, ll< F=(fi)l/alwlll/=) 

x Pw2,+ (IN+ (~; W2) - o**(/~ )I WzII < f~( p )~/3 i W2[ 1/2) 

> 1 - u(fl) (5.2) 

where u (fl)4,0 exponentially fast as fi ~ oc. 
Next we estimate Pv(M~(F)). For each h = (W 1, W2) ~ IIv, put 

N(h) -- {~ e a v ;  ~oZe, = ~ and V\R(~) = W1 U W2) 
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where 

R(~) = ~ezU2,o n r(A) 

By setting Z(Mr(~)) = ~ ~M~(x)exp[--flEv(O], we have 

Pv(Mv(F)) = Zv 

Ya en~Z(Mr(~-)) 
= Pv(N) ExeiiZ(N(Tt)) (5.3) 

where Ev( 0 = y r drl and N = [..JXeli N(~). 
For each ~ = (W~, W2) E Hr, put R~ = V\(W 1 U W2). From the sym- 

metry in (+ )  and ( - ) ,  we have 

Z(N()t)) = 2Zwlw2,+ ZR. + exp(- BlaRxl) (5.4) 

As for Z(Mr(~)) we have the following expression: 

Z(MffX)) = Z w , , + Z w ~ , + z R ~ , + e x p ( - f l l r  I - BIORxl) (5.5) 
To estimate Z(Mr(k))/Z(N(k)) we use the following lemma which is 

proved in Ref. 2 by using the estimates of correlation functions: 

I.emma 5.3 (Minlos and Sinai). For sufficiently large fl, W1, and 
W 2, the following estimate holds: 

Zw"+Zw2'+ > [ 1 - v ( f l ) ] e x p [ - m ( f l ) l W  1U W21 '/2] 
Zw~ u w2, + 

where v(fl),l,O and m(fl)~exp(-4fl) as fl---> c~. 
From this lemma we have 

Z(Mr(~)) exp(- flIFl)Zw,,+ Zw2,+ 
Z (N(~)) 2Zw, u w~,+ 

> � 8 9  v(B) ]exp{--[2f lP 1/2 + m( t ~ ) ] IVI  I/2 } 

From this estimate and (5.3), we have 

ev(Mr(F)) >�89 v( fl)]Pv(N)exp{-[2flO '/2 + m( fl) ]lV[ 1/2} (5.6) 

We have only to obtain the estimate of Pv(N) from below for the 
proof of Lemma 5.2. Remark that 

N c= N (D U N (2) U N (3) 

N(,) = {~; ~2 

N(:) {~; 2 _ 

~--" *open - 4,1R (~5)1 > g(B)l vV} 
N 0 , (~; 2 3- , F} ~--" ~open = t~ iF" 1 E ~open s.t. r 1 touches 



10 Kuroda 

From Lemma 5.1 through an elementary but tedious calculation we 
have 

Pv(N C ) < const �9 exp( - 3/3 ) (5.7) 

By combining (5.2), (5.6), and (5.7) we complete the proof of Lemma 
5.2. 

6. PROOF OF THEOREM 

In this section we give the proof of the theorem. First we estimate the 
length of phase boundary IA[ with respect to Pv('). Let MTz, k be the set of 
configurations given by 

MT, k = (~ E ~V; IA(~)I = Tand # ( A ( ( ) ) =  k} 

where # (A(0) is the number of lines in A(~). By using the similar way of 
counting the lines to the proof of Lemma 5.1 in Ref. l, we have 

Pv(mr, k) < [ V[k2g~rexp(-- fiT) 
Put M r --- ((; IA(0[ -- T). For each ( E Mr, the length of each line in 

A(() is larger than c01n[ V I. So the number of lines in A(0 must be smaller 
than T/colnl V I. Hence we have the following estimate of Pv(Mr): 

Pv(Mr)  < ~ (21 vl)kexp[ --(/3 -- ln3)T] 
1 <<. k < T / c o l n  I V I 

< exp[ - ( /3  - In 3)T] foT/C~ ln21Vl)dk 

< (2/lnl Vl)exp [ - (/3 - 2/Co) T] 

Hence, we have the following estimate: 

kemma 6.1. Pv(IA(~)I > T) < (4/lnlVI)exp[-(fl  - 2/co)T ]. 
From this lemma and Lemma 5.2, we have the following estimate of 

[A(0[ with respect to ev, o('). 
I.emma 6.2. Let us fix 0 ~ (0, 1/4) U (1/4,3/4) U (3/4, 1) and take 

the value of/3 sufficiently large, then we have the following estimates for 
sufficiently large V: 

(t) 0 < o < i / 4  

ev, p(IAI > (2p 1/2 + k//3 )[ VI 1/2) 

< O/In[ Vl)exp ( - [k  - (4/co)p 1/2 - (2k/co/3) - m( fl)][ V[ 1/2) 

(2) 1/4 < 0 < 3/4 

ev, o(IAI > (01/2 + k//3)l VI u2) 

< (4/lnl V I ) e x p ( - [ k  - (4/Co)pU2- (2k /co /3 ) -  m(/3)]IVI u2) 
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(3) 3 / 4 < 0 < 1  

pv (IAI >[2o-  +  /BJf vl'-) 
< (4/In[ Vi)exp { - [ k - ( 4 / % ) 0 ' / 2  _ ( 2 k / c o  fl ) _ m (  f l  )] lgl  1/2 } 

If we put k 0 = 4 /% + 1, then k o - (4/Co)p 1/2 - ( 2 k / c o f l )  - m ( f i )  > 0 
for sufficiently large/~. Hence we have the following estimate in the case of 
p E (0, 1/4): 

lim Pv, o(IAI >(2p 1/2 + ko/~ )IVI I/2) = 0 
v ~ , z  2 

For simplicity we denote this estimate by 

IAI < (201/2 + ko/B)l gl 1/2 asymptotically with Pv,0-prob. 1 (6.1) 

Similarly we have 

IA[ < (o 1/2 + k o / f l ) l  VI1/2 asymptotically with Pv, o-prob. 1 (6.2) 

if O ~ (I/4, 3/4) and 

IAI <[2(1 - 0 )  1/2 + k o / f l ] l V l  1/2 

asymptotically with Pv, o-prob. 1 (6.3) 

if O E (3/4, 1). 
From now on we give the proof of the first assertion of the theorem. 

The main tool for the proof is the estimate of Lemma 4.2. 
First recall the fact that V is divided into three parts, (+)-phase •+, 

1 (-)-phase O , and Re0 by phase boundaries and the elements of ~open" 
From the definition of c0-smallness we have 

]Rc0(~)[ < 2c01VI1/21n[ V[ (6.4) 

We also remark that the boundaries of O+ and ~_ are occupied by 
(+)-spins and (-)-spins, respectively, and that all outer contours in 
@+ and O are Co-small closed contours. So we can apply the estimate of 
Lemma 4.2 to N+ (~; | ). 

Let r ( f l )  be the function of fl satisfying r ( f l )~exp(-3 /?) .  Consider 
the following set of configurations: 

C1 -- {~ ~ No ;  [O, (~)1 >[P + r(B)][V[} 

We prove in the following 

lim P v o ( C O  - 0 for sufficiently large fl (6.5) 
V.~Z 2 ' 

From Lemma 4.2, we have 

lira Pv,~,(Cl A D1) = 0 
V@Z 2 
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Furthermore if ~ C 1N D~, then N _ ( ~ ; O _ ) >  plVI + 1 / 2 r ( f l ) l V  I 
for sufficiently large fi and V. Consequently C 1 N D~ = qs. Hence, we have 
obtained the proof of (6.5). 

Put 

c2= e U;; IO-I <[p- 
Next we prove 

lira Pv, p( C2) = 0 (6.6) 
V~-Z 2 

For each ~ E C 2, IO+ I > [1 - p + 1 /2r ( f l ) ] ]  V] for sufficiently large fl 
and V. From this fact we can prove (6.6) by using the same argument as 
above. Hence we obtain the following lemma. 

Lemma 6.:t. Let us fix the value of fl sufficiently large. Then the 
following estimates are satisfied: 

(i) lira ev,,(llO_ I -  PlVll> r(/~)JVL) = 0 
V ~ Z  2 

(ii) lim Pv, p([IO+ I - (1 - P)I V(I > r( fi)[ V[) = 0 
V ? Z  z 

where r ( f i )  is the function of fi satisfying r(fi)--~exp(-3/3). 
Finally we prove 

lim P t Om a~ v , z :  v, ot - ] < [ o - k ( f l ) ] l V I ) = 0  (6.7) 

where k(/~) : ( 5 k o / 3 f l )  2. 
Consider the following set of configurations: 

C 3 = {~ E No-; [| I < [ p -  k ( f i ) ] [V[ )  

Put O~ m --- O \|215 If V is sufficiently large, 

[ o ~ m ( ~ ) [ > ~ k ( f l ) ] V  I foreach ~ @ C  3 (6.8) 

Then we have the following estimate as to the minimal length of A(~): 

IA(~)[ > 2[p - k(  fl )] 1/21V[ 1/2 --1-- 2(4/5)k(  fl )1/21VI 1/2 

> (2p 1/2 + 7k(fl) l /2)l  V] 1/2 (6.9) 

From (6.1) and (6.9), we have 

[om~ I > [ p - -  k(/~)][V[ asymptotically with Pv,~-prob. 1 

Hence the first assertion of the theorem is proved. The second asser- 
tion is evident from Lemma 4.2. 
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